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DISCLAIMER AND ASSUMPTION OF RISK

The USDA Integrated Pathogen Modeling Program — Dynamic Prediction (IPMP Prediction) is a software
tool developed by the USDA Agricultural Research Service (ARS) for data analysis and model
development in predictive microbiology. USDA grants to each recipient of this software non-exclusive,
royalty free, world-wide, permission to use, copy, publish, distribute, perform publicly and display
publicly this software. We would appreciate acknowledgement if the software is used.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT AND ANY WARRANTY THAT THIS SOFTWARE IS FREE FROM DEFECTS. IN
NO EVENT SHALL USDA BE LIABLE FOR ANY CLAIM, LOSS, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The risk of any and all loss, damage, or unsatisfactory performance of this software rests with you, the
recipient. USDA provides no warranties, either express or implied, regarding the appropriateness of the
use, output, or results of the use of the software in terms of its correctness, accuracy, reliability, being
current or otherwise. USDA has no obligation to correct errors, make changes, support this software,
distribute updates, or provide notification of any error or defect, known or unknown. If you, the
recipient, rely upon this software, you do so at your own risk and you assume responsibility for the
results. Should this software prove defective, you assume the cost of all losses, including but not limited
to, any necessary servicing, repair or correction of any property involved.

Please contact Dr. Lihan Huang (Lihan.Huang@usda.gov) for technical questions.




INTRODUCTION

What is IPMP-Dynamic Prediction?

IPMP-Dynamic Prediction is an extension of the USDA Integrated Pathogen Modeling Program
(IPMP). It is designed to simulate and predict microbial growth and survival under suitable temperature
conditions using previously determined and validated kinetic parameters and predictive models. It can
be used to predict the growth of foodborne pathogens in foods exposed to dynamically changing or
isothermal temperature conditions. It has been redesigned and programmed with Python 3.10 (64 bit).

What is required to use IPMP-Dynamic Prediction?
IPMP-Dynamic Prediction can be run under Microsoft Operating Systems (64 bit).

What models are included in IPMP-Dynamic Prediction?
IPMP-Dynamic Prediction has included 24 growth models and will be expanded gradually to
include more as new ones are developed and validated.

STRUCTURE of IPMP-Dynamic Prediction

IPMP-Dynamic Prediction is based on IPMP (Figure 1). They share similar components and design.
If you are familiar with IPMP, you should be able to use IPMP-Dynamic Prediction. The major
difference is in the data window, which is explained in the Data Window Section.

Figure 1. IPMP-Dynamic Prediction
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DATA WINDOW

The data window contains a spreadsheet-style input area and output area (Figure 2). The data
input area contains three columns and 5000 rows. The data table can be scrolled to examine the data.

Figure 2. Data table
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Raw Data Entry
Raw data must be entered in the data input area. The raw data can be directly entered from the
keyboard or copied/pasted from a text editor or a spreadsheet (Excel®, for example). Raw data can be

edited by right clicking the mouse. The data edit can include “cut”, “copy”, “paste”, and “clear”. If
necessary, click “Clear data” to erase the data from the input area. Clear data before entering new data.

A time-temperature history of a product is needed for using IPMP-Dynamic Prediction and must be
entered in the Data Input Table, starting from Row 1 (Figure 3). In the Data Input Table, the time (“time
(h)”) must be consecutive time in hours. The temperature must be Celsius (°C). The temperature

history can be dynamic, i.e., changing with time (Figure 3, Left), or isothermal (constant) (Figure 3, Right).



A minimum of two time-temperature points is needed. For a constant temperature, two time points are
needed, but the temperature entry is the same (Figure 3, Right).

The time-temperature history must be numerical values and cannot contain any non-numerical
characters or missing values. The program is designed with a data checking algorithm to validate the
data and warn the users if it finds any non-numerical entries or missing data once the data are
submitted for analysis (Figure 3). If an error is found, the users must click the “OK” button and then
correct the error item(s) in the Data Input Table. The error must be corrected before a prediction can be
made.

Figure 3. Data entry to IPMP-Dynamic Prediction. The temperature history may be dynamic or

isothermal.
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Data validation and error checking

The program contains a basic algorithm for validating the input data. If an error is found, it must be
corrected before the program can proceed. The errors may include one of the following categories:

1) No data (Figure 4)
If the program detects no data in the input data, a warning will appear (Figure 4)

Figure 4. No data entry error.
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2) No-numeric entry
If the program detects a non-numerical entry in the input table, Figure 5 will appear.

Figure 5. Non-numerical error
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The non-numerical entry error can occur when the users reuse the data input after making a
prediction, but the length of the data is shorter than previous one. If this is the case, the users
can click the “Clear Data” button next to the “Submit Button” to refresh the data input table.



3) Unsorted time data
If the time data are not in an ascending order, a time entry error will appear (Figure 6).
Figure 6. Time entry error
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INITIAL BACTERIAL LOAD ADJUSTMENT

Under the Data Input Table, the users can adjust the initial bacterial load by adjusting the slider or the
spinner next to it (Figures 2 and 7). Most models contain only one microorganism. So, only the initial
load of that microorganism is needed (Figure 6, Top). The users can adjust the initial load using the
slider or the spinner box to make the adjustment. Some models may also predict the growth of
background microorganisms. If a model contains a model for background microorganisms, another
slider and spinner will appear to allow the users adjust the initial load of the background
microorganisms (Figure 7, Bottom). The GUI for the background microorganisms (background flora load
or other microorganisms) will automatically appear when it is needed.

Figure 7. Adjustment of initial loads
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SELECTION OF A PREDICTIVE MODEL

The users can choose from the Model Selection Window (Figure 8, Top). Once it is clicked, a list will
appear (Figure 8, Bottom). The users can scroll down the list to the available models. Once a model is
selected, it is ready for prediction if the time-temperature history is available in the Data Input Table.
Model selection can be done at any time, before or after data entry. Only one model can be selected at
a time, the users can choose another anytime during data analysis.

Figure 8. Model selection.
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LIST OF MODELS

1) B. cytotoxicus in liquid egg yolk

2) B. cereus spores in cooked rice

3) B. cereus spores in egg fried rice

4) C. perfringens in Cooked Beef

5) C. perfringens in Cooked Chicken

6) C. perfringens in Cooked Turkey

7) C. perfringens in Braised Beef (pH 6.1, Aw 0.99, salt 1.7%, moisture 66.4%)
8) C. perfringens in Roasted chicken (pH 6.3, Aw 0.99, salt 1.6%, moisture 61.0%)
9) C. botulinum (LNTO1) in cooked beef

10) C. sporogenes in cooked beef

11) Cronobacter sakazakii in Reconstituted Powdered Infant Formula
12) E. coli 0157:H7 in mechanically-tenderized beef

13) E. colinon-0157 STEC in 90% lean ground beef

14) E. coli 0157:H7/background microbiota in ground beef

15) L. monocytogenes in cooked pork

16) L. monocytogenes in beef hot dogs (no lactate)

17) L. monocytogenes on hard boiled eggs

18) L. monocytogenes in salmon roe

19) L. monocytogenes in fresh-cut cantaloupe

20) Salmonella spp. in raw ground beef

21) Salmonella Enteritidis in liquid egg whites

22) Salmonella Enteritidis in potato salads

23) Salmonella Enteritidis in liquid egg white and liquid yolk

24) Staphylococcus aureus in cooked potato cubes and potato salad
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PREDICTION

If the data are properly entered, click the “Submit raw data” button (Figure 6) to process the
data. Once the data are submitted, they will be validated and checked for any errors. If no
error is found, the prediction will be calculated, and the results will be presented in the plot
window and report window (Figure 9).

Figure 9. Data report
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DATA DOCUMENTATION

If it is necessary to document the results of predictive modeling, the users can

1) Click “Save plot” button to save the figure as a Portable Network Graphic (PNG) file;
2) Click “Print plot” button to send the figure to a printer;

3) Click “Save report” button to save the report as a text (txt) file; or

4) Click “Print report” button to print the report.

RESETTING ENVIRONMENT

The users can click any of the “Clear data”, “Clear plot”, or “Clear report” button to clear the
data. This will cause IPMP-Dynamic Prediction to reset to a blank environment.
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